Functional principal variance component testing for a genetic association study of HIV progression
نویسندگان
چکیده
منابع مشابه
Principal component of explained variance: An efficient and optimal data dimension reduction framework for association studies.
The genomics era has led to an increase in the dimensionality of data collected in the investigation of biological questions. In this context, dimension-reduction techniques can be used to summarise high-dimensional signals into low-dimensional ones, to further test for association with one or more covariates of interest. This paper revisits one such approach, previously known as principal comp...
متن کاملTesting Principal Component Representations for Faces
A variety of experimental results indicate that the human visual system processes faces at least to some extent holistically, rather than by analysing individual features such as nose and eyes. Principal Components Analysis (PCA) of face images, which is widely used in engineering approaches to face identi cation, produces an inherently global representation. We investigate the psychological pl...
متن کاملA survey of functional principal component analysis
Advances in data collection and storage have tremendously increased the presence of functional data, whose graphical representations are curves, images or shapes. As a new area of statistics, functional data analysis extends existing methodologies and theories from the realms of functional analysis, generalized linear model, multivariate data analysis, nonparametric statistics, regression model...
متن کاملPrincipal component models for sparse functional data
The elements of a multivariate data set are often curves rather than single points. Functional principal components can be used to describe the modes of variation of such curves. If one has complete measurements for each individual curve or, as is more common, one has measurements on a fine grid taken at the same time points for all curves, then many standard techniques may be applied. However,...
متن کاملMultilevel Functional Principal Component Analysis.
The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2018
ISSN: 1932-6157
DOI: 10.1214/18-aoas1135